UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE INGENIERIA DE PROCESOS ESCUELA PROFESIONAL DE INGENIERIA DE INDUSTRIAS ALIMENTARIAS

EFECTO DEL DESHIDRATADO SOBRE LA CAPACIDAD ANTIOXIDANTE

DE LA PULPA DE TOMATE DE ARBOL (Solanum betaceum cav.)

Tesis presentada por:

Bach. Lizbeth Centeno Castillo

PARA OPTAR AL TITULO PROFESIONAL DE INGENIERO EN INDUSTRIAS ALIMENTARIAS

ASESORA:

Ing. Jessica García Atauchi

CUSCO – PERÚ

2022

RESUMEN

El objetivo de la presente investigación fue evaluar la influencia de la temperatura del deshidratado sobre la capacidad antioxidante y contenido de vitamina C de la pulpa de tomate de árbol (*Solanum Betaceum Cav*) fruto procedente del distrito Santa Ana, Provincia de la Convención, departamento del Cusco. La pulpa fue sometida a tres tratamientos térmicos en un deshidratador de bandejas a Temperaturas T1 50 °C, T2 60°C y T3 70°C por tiempos de: 9, 7.5 y 5 h. La capacidad antioxidante para la pulpa fresca y deshidratada fue determinada por el método del DPPH y el contenido de vitamina C en fresco y deshidratado por Cromatografía HPLC.

El análisis químico proximal de la pulpa fresca reporto los siguientes resultados: Un alto contenido de Humedad de 84.74%, Carbohidratos 12.33%, fibra 2.16%, proteína 1.40%, ceniza 1.25%, grasa 0.28%. La capacidad Antioxidante reportó un valor para el coeficiente de inhibición IC50 de 1.9 μmol equivalente Trolox / g pulpa fresca de sacha tomate, el contenido de Vitamina C expresado en Ácido Ascórbico reporto el valor de 4.5 mg /100 g pulpa fresca.

En la pulpa deshidratada a 50°C, 60°C y 70°C para la capacidad antioxidante reporto los siguientes valores expresados para el coeficiente de inhibición IC50 de: 12.0, 12.5 y 11.4 µmol equivalente Trolox /g (pulpa seca de sacha tomate) para cada temperatura respectivamente. El contenido de vitamina C en base seca expresado en Ácido Ascórbico reporto los siguientes resultados: 24.1mg/100 g, 25.7 mg/100 g y 17.3mg/100 g para los tres tratamientos respectivamente, concluyendo que la temperatura influye significativamente en la degradación del Ácido Ascórbico. Finalmente, las muestras deshidratadas fueron sometidas a una prueba de aceptación sensorial de olor, color, sabor, textura y aceptabilidad general utilizando una escala hedónica de 5 puntos, siendo el mejor tratamiento T3 a 70 °C con 5 horas de secado que posteriormente fue llevada a

realizar un análisis microbiológico utilizando la metodología Minsa/Digesa 2008 y ICMSF 2012. Concluyendo que la muestra deshidratada no presenta contaminación con los microorganismos como: salmonella, Escherichia Coli, mohos y levaduras en estudio, encontrándose dentro de los límites máximos permisibles.